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EDURNE GASTON,† JESÚS M. FRÍAS,*,† PATRICK J. CULLEN,† COLM P. O’DONNELL,‡

AND AOIFE A. GOWEN
‡

†School of Food Science and Environmental Health, Dublin Institute of Technology,
Cathal Brugha Street, Dublin 1, Ireland, and ‡Biosystems Engineering, School of Agriculture,

Food Science and Veterinary Medicine, University College Dublin, Dublin 4, Ireland

Physical stress (i.e., bruising) during harvesting, handling, and transportation triggers enzymatic

discoloration of mushrooms, a common and detrimental phenomenon largely mediated by poly-

phenol oxidase (PPO) enzymes. Hyperspectral imaging (HSI) is a nondestructive technique that

combines imaging and spectroscopy to obtain information from a sample. The objective of this study

was to assess the ability of HSI to predict the activity of PPO on mushroom caps. Hyperspectral

images of mushrooms subjected to various damage treatments were taken, followed by enzyme

extraction and PPO activity measurement. Principal component regression (PCR) models (each with

three PCs) built on raw reflectance and multiple scatter-corrected (MSC) reflectance data were

found to be the best modeling approach. Prediction maps showed that the MSC model allowed for

compensation of spectral differences due to sample curvature and surface irregularities. Results

reveal the possibility of developing a sensor that could rapidly identify mushrooms with a higher

likelihood to develop enzymatic browning, hence aiding produce management decision makers in

the industry.
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INTRODUCTION

Buttonmushrooms (Agaricus bisporus) production is a fermen-
tation industry that is able to produce quality protein from
cellulose-based agricultural byproducts (1). White button mush-
rooms are one of themost important horticultural crops grown in
Ireland with more than 60000 tons produced annually (2). This
produce is very sensitive to inappropriate handling and transpor-
tation practices, which cause irreversible injuries on the mush-
rooms and enhance cap discoloration (3).

Browning of mushrooms is the major cause of quality loss that
accounts for a reduction in their market value. The development
of browning is the consequence of a series of biochemical
reactions in which polyphenol oxidase (PPO) enzymes, naturally
present in mushrooms, play an important oxidative role (4, 5).
The PPO family includes catechol oxidase and laccase, both of
which oxidize diphenols into corresponding quinones (6). Qui-
nones are slightly colored products that undergo further reactions
leading to high molecular mass dark pigments called melanins.
Brown discoloration is largely confined to the skin tissue of the
mushroom, where levels of phenols and PPO are higher than in
other parts of the fungi (7). PPO inactivation has been the target
of several postharvest treatments including thermal ormicrowave
heating (8), irradiation (9), and addition of inhibitors (10). How-

ever, consumer preference for fresh produce makes the manage-
ment of PPO activity a problem in the production, distribution,
and retail of fresh mushrooms.

Hyperspectral imaging (HSI) is a rapid and nondestructive
technology that has recently emerged as a powerful process
analytical tool for food analysis (11). Hyperspectral images are
composed of hundreds of contiguous wavebands for each spatial
position of an object. Consequently, each pixel in a hyperspectral
image contains the spectrum of that specific position. Hyperspec-
tral images, known as hypercubes, are three-dimensional blocks of
data, comprising two spatial and one wavelength dimension.
Hypercube classification enables the identification of regionswith
similar spectral characteristics. Because regions of a sample with
similar spectral properties have similar chemical compositions,
hypercube classification allows for the visualization of biochemi-
cal constituents of an object, as well as their concentration
and distribution over the sample. Because of the large size of
hypercubes, multivariate analytical tools, such as stepwise multi-
ple linear regression (MLR), principal component regression
(PCR), and partial least-squares regression (PLSR), are usually
employed for hyperspectral data mining and identification of key
wavelengths for the development of automated multispectral
sensors.

Rapid spectroscopic techniques show potential for the replace-
ment of slow and/or expensive analytical measurements while
retaining sufficient accuracy (12). Recent studies have demonstrated
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HSI to be a useful technology for the investigation of various
mushroom quality-related issues, such as deterioration (13), freeze
damage detection (14), and blemish characterization (15). Recent
advances in the application of HSI to the assessment of safety and
quality of other foodstuffs also include contaminant detection
(16, 17), defect identification (18-20), constituent analysis (21),
and quality evaluation (22-24).

So far, HSI has not been employed to study the activity of
enzymes in mushrooms. Short wavelength infrared HSI was
recently used to predict R-amylase activity at early germination
stages in two classes of wheat kernels, and R2 values of 0.54 and
0.73, respectively, were achieved (25). Given that PPOs play a
key role in the mushroom browning process and that extraction
and current activity measurement techniques, such as radio-
metric, electrometric, chronometric, and especially spectropho-
metric (26), are time-consuming (as an example, in this study,
1.5-2 h was needed to obtain an extract and to measure its
activity), it would be desirable to have a fast and nondestructive
system that could estimate the enzyme activity on mushroom
caps. The development of a HSI system with the ability to make
simultaneous predictions on multiple mushroom caps could
enable faster detection of produce likely to lose market value
and hence reduce economical losses in the industry. The aim of
the present study was to investigate the potential of visible near-
infrared (vis-NIR) (445-945 nm) HSI for the prediction of PPO
enzyme activity on mushroom caps.

MATERIALS AND METHODS

Mushroom Supply and Damage. A. bisporus mushrooms (strain
Sylvan A15, Sylvan Spawn Ltd., Peterbourough, United Kingdom) were
grown in plastic bags and tunnels in Kinsealy Teagasc Research Centre
(Kinsealy, Co. Dublin, Ireland) following common practices in the
mushroom industry. Only uniform, undamaged, closed cap mushrooms
from the first and second flush with a diameter of 3-5 cm were hand-
picked, placed in a metal grid, and carefully delivered to the laboratory in
purpose-built containers, to minimize mechanical damage during trans-
port. Mushrooms arrived at the laboratory premises within 1 h after
harvesting and were stored overnight at 4 �C.

Some samples were subjected to vibrational bruising to simulate crop
handling and transport. Mushrooms were damaged in batches of 600 g
(approx) units inside polystyrene plastic boxes. Mechanical damage was
induced by using a Gyratory Shaker model G2 shaking table (New
Brunswick scientific Co., Edison, NJ) at 300 rpm amplitude for controlled
periods of time. A shaking period of 10 min led to loss of 6 units of
lightness (L*) and a color difference (ΔE) of 7.79 in CIE L*a*b* color
space.A shaking periodof 20min led to a loss of 12 units ofL* and aΔE of
15.57. ΔE defines the magnitude of the total color difference and is
expressed by the following equation:

ΔE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL�

0 - L
�Þ2 þ ða�0 - a�Þ2 þðb�0 - b

�Þ2
q

where the “0” subscript refers to color measurements before shaking and
no subscript refers to color measurements after shaking.

Mushrooms were placed on polystyrene trays in groups of approxi-
mately 10 andoverwrappedwith PVC film following a commonpractice in
the mushroom industry. The trays were stored under refrigeration
(GRAM K400LU, Denmark) for the duration of the experiment.

Mushrooms of three damage levels [undamaged (D0), 10 min of
shaking damage (D10), and 20 min of shaking damage (D20)] were
monitored throughout five time points (days 0, 1, 2, 3, and 6 of
storage). At each sampling time point during refrigerated storage, one
tray of each damage level was randomly selected and removed from
storage 15 min prior to testing. Wrapping was removed, and all of
the mushrooms in the packet were scanned with the HSI equipment
and then subsequently divided into two groups of five mushrooms for
enzyme extraction. This procedure was repeated for each tray. A total
number of 549 mushrooms were scanned, and 114 extracts were
obtained.

Image Acquisition System. Hyperspectral images were obtained
using a pushbroom line-scanningHSI instrument (DVOptics Ltd., Padua,
Italy). The instrument was comprised of a moving table, illumination
source (150 W halogen lamp source attached to a fiber optic line light
positioned parallel to the moving table), mirror, objective lens (16 mm
focal length), Specim V10E spectrograph (Spectral Imaging Ltd., Oulu,
Finland) operating in the wavelength range of 400-1000 nm (spectro-
scopic resolutionof 5 nm), CCDcamera (BaslerA312f, effective resolution
of 580� 580 pixels by 12 bits), acquisition software (SpectralScanner, DV
Optics), andPC.A cylindrical diffuserwas placed in front of the fiber optic
line light to produce a diffuse light source. In this study, only spectral data
within the wavelength range of 445-945 nm were used, as beyond this
range, the noise level of the camera was high, and the signal efficiency of
the light source was low.

Reflectance Calibration. Reflectance calibration was carried out prior
to mushroom image acquisition to account for the background spectral
response of the instrument and the “dark” camera response. The bright
response (“W”) was obtained by collecting a hypercube from a uniform
white ceramic tile; the dark response (“dark”) was acquired by turning off
the light source, completely covering the lens with its cap, and recording
the camera response. The corrected reflectance value (“R”) was calculated
from the measured signal (“I”) on a pixel-by-pixel basis as shown by:

Ri ¼ ðIi - darkiÞ
ðWi -darkiÞ

where i is the pixel index, that is, i=1, 2, 3, ..., n and n is the total number
of pixels.

Enzyme Extraction. Mushroom homogenates were prepared in
duplicate from each sample tray, as follows: Five grams of the outer skin
of mushroom caps was extracted using a sharp knife, chopped, and placed
in a Turrax homogenizer (ULTRA-TURRAXT25, Janke &Kunkel IKA
Labortechnik, Germany) in a 1:4 (w:v) ratio with 0.5M phosphate buffer,
pH 6.5, containing 50 g/L polyvinylpirrolidone (Sigma-Aldrich, Dublin,
Ireland). Homogenizationwas carried out for 1min at 4 �C and 8000 rpm.
The homogenate was centrifuged (2K15 Laborzentrifugen, SIGMA,
Germany) at 12000g for 35 min at 4 �C. The supernatant was collected
by filtration through no. 1 Whatman paper and used as the crude enzyme
extract. Extracts were kept at 4 �C in the dark until spectrophotometric
assay (within 2 h).

PPO activity was measured spectrophotometrically by a modified
method based on those of Galeazzi et al. (27) and Tan and Harris (28).
The reaction mixture contained 0.1 mL of crude enzyme extract and
2.9 mL of substrate solution [0.011 mol/L catechol (Sigma-Aldrich) as
substrate in 0.05 mol/L phosphate buffer, pH 6.5]. The rate of catechol
oxidationwas followed at 410 nm (UV2UV/vis Spectrometer, UNICAM,
United Kingdom) and 25 �C and represented against time. The maximum
slope of the straight-line section of the activity curve was used to express
the enzyme activity (EAU/g of freshmushroom). A unit of enzyme activity
was defined as an increase of 0.001 absorbance units per minute. The
enzyme activitywasmeasured in triplicate for eachmushroomextract, and
the average value was computed. The standard error (SE) of this method
was 350.50 EAU/g of fresh mushroom.

Image Processing and Data Analysis. Data were recorded in
reflectance, saved in ENVI header format using the acquisition software,
and then exported to MATLAB R2007b (The Math Works, Inc., United
States).

Masking. A masking step was carried out to separate the mushroom
pixels from the background. The mask was created by thresholding the
mushroom image at 940 nm, where a pixel threshold value of 0.2 was used
to segment the mushroom from the background. All of background
regions were set to zero, and the nonzero elements of the image were used
to extract one mean spectrum for each mushroom.

False RGB Images. False RGB images were obtained by extracting
mushroom images at 460 (blue), 545 (green) and 645 nm (red) and stacking
them.

Model Building. One of the main challenges involved in building
predictive models with hyperspectral image data is that such images
contain a vast amount of spectral data, while only one or a few measure-
ments of the variable of interest can be taken for each sample studied. In
this particular study, the reference method for enzyme extraction involved



6228 J. Agric. Food Chem., Vol. 58, No. 10, 2010 Gaston et al.

using the skin of 3-5 mushrooms to obtain one single enzyme extract.
Consequently, 3-5 hyperspectral images were to be matched with one
single enzyme activity value in regression modeling.

When developing regression models with hyperspectral data, it is
common practice to extract the mean spectrum of each sample and use
it to build a prediction model to estimate an attribute (29). With that
approach in mind, two different modeling strategies were used as follows:

Strategy 1: The first strategy extracted the mean spectrum of each
mushroom and assigned the same enzyme activity
value to all of the mushrooms used in obtaining one
particular extract. A training set of nTRAIN_1=280 and
a test set of nTEST_1 = 269 were used for this strategy.

Strategy 2: The second strategy computed themean spectra of all of
the mushrooms used to obtain one enzyme extract and
assigned the enzyme activity value of that extract to the
resulting spectrum. A training set of nTRAIN_2= 60 and
a test set of nTEST_2 = 54 were used for this strategy.

The following spectral preprocessing methods were used to remove
nonchemical biases, such as scattering effects and variations arising from
mushroom surface curvature, from the spectral information: standard
normal variate (SNV) (30) and multiplicative scatter correction
(MSC) (31). MSC aims to reduce the effects of scattering in a set of
spectra by performing linear regression on a “target” spectrum. Two
different target spectra led to two different MSCmethods: (a) “setMSC”,
where themean spectrumof eachmushroomwas corrected using themean
spectrum of the data set as the target spectrum, and (b) “sample MSC”,
where the spectrum of each pixel in a mushroom was corrected using the
mean spectrum of that mushroom as the target spectrum. The mean
sample MSC-corrected spectrum for each mushroom was obtained and
used for the model.

To improve normality of the distribution of the reference variable,
enzyme activity values were transformed into natural logarithmic units
and mean centered. Three regression methods were used to build models
for enzyme activity prediction:

MLR: Optimal wavelengths for enzyme activity prediction were
selected by the “forward” method in best subsets stepwise
linear regression using the “leaps” package in R (32). Multi-
colinearity of predictor variables is problematic for MLR
models based directly on spectroscopic values, tending to
result in unstable model predictions (33). The variance
inflation factor (VIF) is an index commonly used tomeasure
the colinearity between variables in regression models:
Typically, predictor variables with VIF> 10 are considered
to be highly correlated. To test the predictor wavelengths for
multicolinearity, the VIF of each predictor was calculated
using the “DAAG” package in R (32).

PCR: Principal component analysis (PCA) reduces the dimension-
ality of spectral data by transforming them into principal
component scores in order of decreasing variance. The
autoscaled matrix of spectral values was transformed into
PC space by representing the original data in the directions
defined by orthogonal eigenvectors using R (32). PCR
models were developed using PC space scores instead of
wavelength space values. Analysis of variance (ANOVA)
was employed using R (32) to compare models with an
increasing number of PCs. The decision on the number of PCs
to be taken for eachmodel wasmade baseduponANOVA test
results. Only significant components (p<0.05) were included
in the model.

PLSR: This technique is commonly used when predicting a
response from many measured variables, which may be
collinear. PLSR was applied using the “pls” package in
R (32 ). Leave-one-out cross-validation was used on the
training set. Performance of the prediction models was
evaluated using the root of the mean of the sum of
squared differences between predicted and measured
enzyme activity values of the training set (RMSECV)
and the number of latent variables required (# LV). The
optimal number of LV for inclusion in the PLSR models
was estimated using the method described by Martens
et al. (34 ).

The experiment was carried out two times, making two indepen-
dent mushroom sets: a training set (nTRAIN_1 = 280 mushrooms and
nTRAIN_2 = 60 extracts) and a test set (nTEST_1 = 269 mushrooms and
nTEST_2 = 54 extract). Overall, 549 mushrooms were used to obtain 114
extracts in total. All of the models were built on training sets and then
applied to independent test sets of samples. The ratio of percentage
deviation (RPD), which is the ratio of the standard deviation (SD)
of the laboratory measured (reference) data to the root-mean-square of
cross-validation (RPDTRAIN) or root-mean-square error of prediction
(RPDTEST) (35), was used to assess model performance. Twenty-four
models were classified in terms of their ability to generalize following
the criteria outlined by Viscarra Rossel et al. (36): RPD < 1.0 indicates
very poor model/predictions, and their use is not recommended; 1.0 <
RPD<1.4 indicates poor model/predictions where only high and low
values are distinguishable; 1.4 < RPD < 1.8 indicates fair model/
predictions that may be used for assessment and correlation; 1.8 <
RPD< 2.0 indicates good models/predictions where quantitative predic-
tions are possible; 2.00 < RPD < 2.5 indicates very good, quantita-
tive model/predictions; and RPD > 2.5 indicates excellent model/
predictions.

Prediction Maps. The two models whose performances were found to
be best were selected and applied to each pixel in the hypercube data of
individual mushrooms. This enabled the generation of virtual prediction
images for enzyme activity.

RESULTS AND DISCUSSION

Spectra. Average reflectance spectra obtained from the HSI
data of undamaged (D0), damaged 10 (D10), and damaged 20
(D20) mushrooms are shown in Figure 1a. The average reflec-
tance of damaged samples was lower than the average reflectance
of nondamaged mushrooms over the entire spectral region.
Bruising due to mechanical damage was expected to have led to
loss of whiteness and lightness (L*) and therefore lower reflec-
tance values. A remarkable difference in intensity was observed
between D0 and D20 mushrooms, whereas the intensity of D10
spectra was intermediate between D0 and D20. Broad spectra in
the vis-NIR wavelength range are characteristic of undamaged
mushrooms, corresponding to their white appearance (13). The
greatest differences in shape between bruised and nonbruised
samples arose in the 600-800 nm region, where undamaged
mushrooms exhibited broader spectral features than the damaged
mushrooms. The spectral differences mentioned above could be
related to the formation of brown pigments (14) mainlymelanins,
which derive from enzyme-catalyzed oxidation products called
quinones.

Enzyme Activity. The average PPO enzyme activity of each
mushroomgroup is shown inFigure 1b. The higher activity values
observed in bruised mushrooms suggest that mechanical damage
has an effect on enzyme expression. Considering that physical
injuries are one of the factors that lead tomushroombrowning (3)
and that this phenomenon is mediated by PPO enzymes (37), this
result was not unexpected. The difference in PPOactivity between
D10 and D20 was not significant (p > 0.05), which could mean
that the stress caused byD10 damage level was sufficiently high to
bring enzyme expression to itsmaximum, and further damage did
not contribute to further activation of tyrosinase.

Modeling.VIF was greater than 10 for everyMLRmodel built
with more than two wavelengths. Therefore, MLR models that
used only two wavelengths were considered for further analysis.
In the case of PCRmodels, the inclusion of the third PC was not
always significant (p < 0.05), so two and three PC models were
considered for further sections. For all PLSRmodels, twowas the
optimal number of LV to include in themodel. Previous studies in
the field employedmodels that performedwell using lownumbers
of wavelengths (13), PCs (14, 38), or PLS LV (39).

Model performance in terms of RPD is shown in Table 1.
RPDTRAIN is a measure of model performance within the model
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training data set, and RPDTEST indicates how the model per-
formed when applied to an independent model testing data set.
RPDTEST was considered to be more adequate to assess model
performance, and further sections of this paper will focus only on
RPDTEST values.

Models were classified in terms of RPDTEST as follows:
RPDTEST < 1.0 = “very poor”, 1.0 < RPDTEST < 1.4 =
“poor”, 1.4 < RPDTEST < 1.8 = “fair”, 1.8 < RPDTEST <
2.0 = “good”, 2.00 < RPDTEST < 2.5 = “very good”, and
RPDTEST > 2.5 = “excellent”.

Strategy. Overall, models with a better generalization ability
to predict the independent data set were obtainedwhen strategy 1
was employed. As it can be seen inTable 1, for any preprocessing
and chemometric technique combination, the RPD obtained
under model strategy 1 (i.e., when the mean spectrum of each
mushroomwas extracted and the same enzyme activity value was
assigned to all of the mushrooms used for one extract) was higher
than the RPD obtained under model strategy 2 (i.e., when the
mean spectra of all of the mushrooms used to obtain one enzyme
extract was computed and the enzyme activity value of that
extract was assigned to the resulting spectrum). In fact, strategy
2 only gave “poor” or “very poor” predictive models, whose
RPDTEST ranged from 0.81 to 1.3. This could be because when
the mean spectrumwas computed for an extract under strategy 2,
some features arising from the original spectral variability of the
mushrooms within that extract might have been lost. This would
result in partial loss of their ability to generalize and decrease in
RPDTEST values.

Pretreatment. For MLR, raw reflectance spectral data and
sample MSC-corrected reflectance spectra led to better perfor-
mance models than SNV or set MSC spectra. The better models
were “fair”, and the worse ones were “poor” (according to the
previously mentioned RPD classification) and therefore dis-
carded. Similar trends were observed in PCR models, where

“very good” models were obtained with raw reflectance and
sample MSC-corrected reflectance spectra (RPDTEST = 2.13
with three PCs), a “good”model with SNV pretreated reflectance
data (RPDTEST=1.84with twoPCs), and a “fair”modelwith set
MSC-corrected reflectance spectra (RPDTEST = 1.77 with two
PCs). The number of PCs was lower in the case of SNV and set
MSC, but adding a third one did not significantly improve model
performance or RPDTEST. For PLSR models, all pretreatments
resulted in “poor” models, whose highest RPDTEST was 1.22.

Regression Method. Under strategy 1, PCR models per-
formed better thanMLR or PLSRmodels for all of the pretreat-
ments. This happened for both training and test sets. The
performance of MLR and PLSR models for the test set was not
as good as it was for the training set, but that did not happen
for PCR models, where RPDTEST values were higher than
RPDTRAIN values.

Under model strategy 2, all chemometric methods performed
similarly for the training set. For the test set, PCR models
performed better than MLR or PLSR, but still, “poor” predic-
tions (RPDTEST < 1.3) were obtained.

PCR models developed on raw reflectance and sample MSC-
corrected reflectance data undermodel strategy 1 were selected as
best models and used in further analysis. The coefficient of
determination and root mean-squared error of cross-validation/
prediction for thesemodelswereRTRAIN_1

2=0.75, RMSECV=
0.38 [ln(EAU/g)],RTEST_1

2=0.78 andRMSEP=0.30 [ln(EAU/
g)]. Root mean-squared errors of cross-validation/prediction are
frequently used to assess the performance of the regression, and
low values indicate good models.

In Figure 2, enzyme activity values predicted by one of the
selectedmodels (model strategy 1, PCR, raw reflectance data) are
plotted against experimental enzyme activity values, for (a)
training and (b) test sets, respectively. The range of measured
reference values was wider in the training set than in the test set,

Figure 1. (a) Average raw reflectance spectra for mushroom at different damage levels. (b) Average( SD of PPO activity as a function of damage level.

Table 1. RPD for Different Model Strategies, Spectral Pretreatments, and Chemometric Methods

MLR PCR PLSR

strategy pretreatment λ (nm) RPDTRAIN RPDTEST # PCs RPDTRAIN RPDTEST # LVs RPDTRAIN RPDTEST

1a

none 450, 945 1.87 1.47 3 2.01 2.13 2 1.95 1.16

SNV 835, 560 1.02 1.06 2 1.71 1.84 2 1.63 1.22

set MSC 835, 545 1.52 1.14 2 1.65 1.77 2 1.62 1.20

sample MSC 465, 945 1.91 1.43 3 2.01 2.13 2 1.95 1.14

2a

none 470, 945 1.28 1.16 2 1.27 1.30 2 1.25 0.97

SNV 450, 465 1.22 1.07 1 1.17 1.20 2 1.17 0.85

set MSC 450, 575 1.15 0.89 1 1.17 1.16 2 1.17 0.81

sample MSC 495, 945 1.35 1.22 2 1.35 1.27 2 1.33 1.22

aAs described in the Model Building subsection of the Materials and Methods.
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where PPO activity levels were, in general terms, lower and
confined to a narrower range of values. This scenario is not
optimal for model testing, but it is common when dealing with
horticultural products, whose postharvest behavior is known to be
affected by biological variation. Burton (3) reported that mush-
room bruisability can vary from crop to crop. A study by
Mohapatra et al. (40) observed 30-41% variability in enzyme
activity measurements and attributed it to batch-to-batch varia-
bility. Some vertical scattering can be seen in this figure, too,
indicating variability in predicted values for mushrooms with
similar reference enzymes activities. This would explain the rela-
tively low values of the coefficients of determination obtained
(RTRAIN_1

2 = 0.75 and RTEST_1
2 = 0.78). The horizontal scatter-

ing is mainly attributable to mushroom-to-mushroom variability.
Prediction Maps. HSI has the ability to map the spatial

distribution of components on a sample. The two selectedmodels
(model strategy 1, PCR, nontreated reflectance, and sample
MSC-corrected reflectance) were applied to each pixel in the
hypercube data of individual mushrooms, and that enabled the
generation of virtual prediction images for enzyme activity. In
such images, the grayscale intensity is related to the value of the
predicted enzyme activity at different regions of the mushroom
cap: The lighter the color is, the higher the predicted activity
value.

Figures 3 and 4 show the predicted distribution of enzyme
activity over the cap of undamaged (D0) and damaged (D20)
mushroom samples, respectively. Each figure shows (a) false
RGB images, (b) prediction maps based on the raw reflectance
model, and (c) prediction maps based on the sample MSC
pretreated reflectance model of four mushroom caps whose skins
were processed together to obtain one single enzyme extract. The
mean and SD of the predictions, both in [ln(EAU/g)], are
displayed below each map in panels b and c. The values below
false RGB images correspond to the activity measurement
obtained experimentally for each extract, which is the same for
all of the mushrooms within each figure.

The main difference between the prediction images of D0 and
D20 is the grayscale intensity. The dark gray tonality inFigure 3b,
c indicates that the models predicted low activity values on D0
mushroom caps. D20 predictions, on the contrary, show much
lighter colors in Figure 4b,c, which reveal higher predicted values
for enzyme activity. At scanning time, damaged mushrooms
looked different from undamaged ones, and the corresponding
extracts exhibited amuch higher enzyme activity, for which it was
expected that themodels would generate very different prediction
images according to damage level.

For all of the mushrooms in Figures 3 and 4, the mean
predicted values by raw reflectance and sample MSC-corrected

reflectance models (displayed under each image in columns b and
c) were very similar. This indicates that both raw reflectance and
sample MSC-corrected reflectance models performed very simi-
larly in terms of quantitative prediction. This is in agreement with
the similarities observed previously in the coefficient of determi-
nation and the root-mean-square error of bothmodels. However,
the very different appearance of predictions maps in b and c

points out these two models have some dissimilarities, too.
• In raw reflectance-predicted images (Figures 3b and

4b), the distribution of enzyme activity prediction is
uneven throughout the cap. The relatively high SD
values under each map reveal this heterogeneity, too.
As clearly seen in Figure 3b, the highest predicted
values concentrate around the mushroom edges, (i.e.,
the region showing a higher level of bruising on false

Figure 2. Predicted PPO activity as a function of actual PPO activity for three PC PCR models applied to training (a) and test (b) raw data sets under model
strategy 1.

Figure 3. Undamaged mushroom caps with (a) false RGB images, (b)
prediction maps by raw reflectance model, and (c) prediction maps by
sample MSC-corrected reflectance model.
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RGB images (Figure 3a). This could be partly due to
the increased presence of brown-colored pigments at

edge regions, which are derived from PPO-mediated
reaction products, but spectral differences related to
mushroom curvature might have also affected the
performance of the model differently in different
regions of the cap. It is difficult to estimate the extent
of such phenomena and at this point. The lack of
shading effects in Figure 4b, where predicted values
do not show any clear morphological trend, suggest
that the effect of sample curvature on the reflectance
model may not be observable when the levels of
damage and browning are high.

• However, it is interesting to note that all of Figures 3b
and 4b reveal the ability of this model to point out the
regions that look “different” in false RGB images.
The model captures the spectral variability arising
from surface bruises/marks (e.g., confined regions
that show browner color in false RGB images) and
reflects it onto the prediction maps. For undamaged
mushrooms, Figure 3b exhibits lighter grayscale ton-
ality (indicating higher predicted value) on the small
regions that show signs of bruising in Figure 3a.
Similarly, for damaged mushrooms, Figure 4b pre-
sents a darker color (indicating lower predicted value)
on those regions where browning had yet not deve-
loped in Figure 4a.

• Sample MSC-corrected reflectance-predicted images,
on the other hand, appear smoother than raw reflec-
tance predictions. All of the pixels within one sample
MSC-corrected reflectance prediction image have
similar predicted values; therefore, the grayscale in-
tensity is very uniform, and the SDvalues are low. The
MSC correction estimates the relation of the scatter
of each pixel with respect to the target spectrum

Figure 4. Damaged mushroom caps with (a) false RGB images, (b)
prediction maps by raw reflectance model, and (c) prediction maps by
sample MSC-corrected reflectance model.

Figure 5. (a) Imaginary line drawn through the center of false RGB images of undamaged (top row) and damaged (bottom row) mushroom caps and their
corresponding predictions by (b) raw reflectance model and (c) sample MSC-corrected reflectance model.
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(in this case, the mean spectrum of all of the pixels)
(31). Thus, a similar level of scatter is obtained for all
spectra, and the effect that the morphology of the
sample (i.e., mushroom curvature) could have on the
model is diminished, too.

Figure 5 shows the enzyme activity prediction of imaginary
lines drawn through the center of each mushroom cap, shown in
red in Figure 5a. Figure 5b shows how the raw reflectance model
predicted the pixel values on those lines; the pixels that form the
line are represented in the x-axes, while the predicted enzyme
activity values are shown in the y-axes. The line in Figure 5c

corresponds to the prediction of the sample MSC-corrected
reflectance model. For an undamaged mushroom (see top row),
the curved shape of the prediction line in b indicates that pixels
from the center and edge regions of the cap were predicted
differently; the activity was low in the central region of the
mushroom and increased gradually toward the edges. This is in
agreement what was observed in Figure 3b and could be because
the enzyme activity distribution was not uniform along the
mushroom cap surface or because this model is not able to deal
with spectral differences arising from mushroom cap surface
curvature. The line in c, predicted by the sample MSC-corrected
reflectance model, is much flatter than the one in b, which
indicates that predictions along the imaginary line were more
homogeneous and suggests that enzyme activity was equally
distributed over the mushroom cap. Despite the fact that both
models predicted similar mean activity values (9.91 [ln(EAU/g)]
and 9.94 [ln(EAU/g)], respectively), differences in pixel distribu-
tion suggest that the ability of each model to overcome spectral
variability due to sample morphology is different. For damaged
mushrooms (see bottom row), the line predicted by the reflec-
tancemodel (b) was uneven, but as opposed towhatwas observed
in the undamaged mushroom, it did not have a clear curved
shape. In this case, the variation of predicted enzyme activity
values across the imaginary line could be related to the level
of damage/browning, whereas the relationship between pre-
dicted values and pixel position/surface curvature was not as
clear as for undamagedmushrooms. The line in cwas flatter than
in b, as observed for undamaged mushrooms. Raw reflectance
and sample MSC-corrected reflectance models predicted almost
identical mean enzyme activity values (10.36 [ln(EAU/g)] and
10.37 [ln(EAU/g)], respectively), and their distributions across
the pixel line were more similar than in the case of undamaged
mushrooms.

The ability of a HSI system to predict PPO activity on mush-
room caps was assessed in this study. PPO activity prediction
mapswere generated to gain understanding of (a) the distribution
of the enzyme activity over themushroomcap and (b) the effect of
sample MSC pretreatment on the predictive ability of the model.
Results reveal some potential of vis-NIRHSI as a tool to estimate
the activity of enzymes responsible for mushroom browning. The
mushroom industry could benefit from such a tool for rapid
identification of mushrooms of reduced marketability.
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